
Using an Array as an If-Switch
Nazik Elgaddal and Ed Heaton, Westat, Rockville, MD

Abstract

Do you sometimes find yourself using nested IF
statements or nested SELECT blocks? Does the code
become more difficult to develop, read, or maintain as the
nesting gets deeper? Multi-dimensional arrays can
replace that code with an array declaration and a simple
assignment statement.

Have you ever used multi-dimensional arrays? They
really can make your work more elegant. This paper will
explore the nature of multi-dimensional arrays as it
develops what Ian Whitlock calls an array
implementation of a master IF-switch.

SAS® allows 28 dimensions to its arrays. We doubt
you would ever need that many dimensions; and your
computer probably doesn't have the memory to process
such an array. We recently suggested to a fellow SAS
programmer that there was probably never a reason to use
an array of more than three dimensions. Less than an
hour later, we developed a job that used a four-
dimensional array! It accomplished, in 59 lines of easy
code, a task that used 289 lines of SELECT blocks. This
paper will show how it was done.

About Arrays

What is a SAS array?
A SAS variable array is a convenient way of

temporarily arranging a group of variables that are
identified by an array-name. The array name is not a
variable; it simply identifies the array in the DATA step.
Arrays exist only during the duration of the DATA step.

Variable Arrays
Variable arrays in SAS are different from arrays in

most other programming languages. In SAS, a variable
array is an indexed list of pointers to variables in the
Program Data Vector (PDV). The syntax of a one-
dimensional variable array is

Array arrayName [numberOfVars] <$><w>
 <variableList>
 <(initialValues)>
;

All of the variables in the variable list must be of the same
type, either character or numeric. This simplest kind of
variable array has subscripts beginning with the number
one and ending with the number in the brackets
(numberOfVars). SAS will not allow you to assign an
array name which is the name of a variable that is already
in the data set. Furthermore, it is probably a bad idea to

use the name of a SAS function as the array name. Why?
Because SAS will allow you to use parentheses, as well as
brackets and braces, to encase the array indices. So, it can
become unclear whether code is an array reference or a
function call. E.g., we can define an array as

Array sqRt (5) (10 20 30 40 50) ;

If we then code

x = sqRt(4) ;
Put "The square root of 4 is " x "." ;

"The square root of 4 is 40 ." will be written to the log.
This is obviously an error; SAS assumed SQRT was the
name of the array rather than the name of the function. In
fact, the SQRT function is no longer available to us in this
DATA step! SAS could correct this problem by requiring
us to use brackets, [], or braces, {} for array indices and
reserving parentheses for functions; but they do not. For
clarity in your code, we suggest that you use either
brackets or braces for your array references. We will use
brackets in this paper.

You don’t have to specify the size of a variable array.
You can code something like

Array nazik [*] $15 child1-child3 (
 "Mehera" "Maha" "Marwa"
) ;

and the asterisk will tell SAS to count the variables to
determine the size of the array. The remainder of your
code can get the size of the array using the DIM function.
E.g.:

Do i=1 to dim(nazik) ;

or

NumberChildren = dim(nazik) ;

Sometimes, we don’t want the array indices to start
with one. For example, suppose we have a variable for
each year from 1998 through 2003. We might want to
specify the array as

Array inc [1998:2003] gross1-gross6 ;

so that we can use an existing variable that contains the
year for the array index. Our code can fetch the first
index using the LBOUND function and it can get the last
index using the HBOUND function. So, one can code

Do i=lBound(inc) to hBound(inc) ;

to loop through the array.

Memory Considerations
Let's investigate the memory usage for arrays. We need

a baseline. A DATA step that does nothing takes about 89
kilobytes of memory under SAS version 9.0 running
under Windows 2000.

 1 Data _null_ ;
 2 Run ;

NOTE: DATA statement used
 Memory 89k

Suppose we create a data set with 10k variables using
SAS version 9.0.

 3 Data test ;
 4 Retain x1-x10240 0 ;
 5 Run ;

NOTE: The data set WORK.TEST has 1
 observations and 10240
 variables.
NOTE: DATA statement used
 Memory 2393k

Each of these numeric variables is eight bytes long, but
they take about 230 bytes of memory while in the DATA
step.

4.230
10

892393 =−

Why so much memory? Because SAS has to provide
space for storing the data type, the format and informat
name, the variable label and length, etc. for each variable.

There is a slight memory impact when you use an array.
To test this, let's first associate these 10k variables with
two arrays. We used two arrays so that any memory
usage that is not additive with each array will stabilize.

 6 Data _null_ ;
 7 Set test ;
 8 Array a [*] x: ;
 9 Array b [*] x: ;
10 Run ;

NOTE: DATA statement used
 Memory 2308k

Now let's add one more array.

11 Data _null_ ;
12 Set test ;
13 Array a [*] x: ;
14 Array b [*] x: ;
15 Array c [*] x: ;
16 Run ;

NOTE: DATA statement used
 Memory 2349k

It seems to take about four bytes of memory to
associate each variable with the array.

2349k 2308k 4.1 bytes.
10k

− =

TEMPORARY Arrays

While a variable array is temporary, the data in the
array are not temporary; they are stored in data set
variables. SAS allows arrays where both the array and
the data are temporary. These arrays use far less memory
because SAS does not need to store all of the information
that is pertinent only to variables.

To create an array that contains temporary data, use the
key word _TEMPORARY_ in the ARRAY statement where
you would list the variables for a variable array. You can
create an array for ages with the following code.

Array age [3] _temporary_ ;

You can initialize some or all of the elements in the array
as follows.

Array age [3] _temporary_ (14 12) ;

You can initialize all of the elements to a single value
(e.g., zero) as follows.

Array a [10] _temporary_ (10 * 0) ;

Temporary arrays are more like traditional arrays from
other languages; they reserve a contiguous block of
memory that is accessed through the indices. Temporary
arrays are not written to the output data set; the array
elements are not SAS variables. Values of temporary
array elements are automatically retained; they are not
reset to missing at the beginning of each iteration of the
DATA step. They do not have names or other variable
attributes except for the data type and, for character
arrays, the length of each element.

Let's create a _TEMPORARY_ array with 10k numeric
elements.

17 Data _null_ ;
18 Array a [10240] _temporary_ ;
19 Run ;

NOTE: DATA statement used
 Memory 175k

Remember that a DATA step that does nothing takes 89k
of memory. This 10k _TEMPORARY_ array of 8-byte
numbers used only 8.6 bytes per element.

175k 89k 8.6 bytes.
10k

− =

You cannot use an asterisk, [*], for the dimension in a
temporary array declaration because SAS will not be able
to determine its size since it has no variables to count.

Multi-dimensional Arrays
Single-dimensional arrays represent vectors; multi-

dimensional arrays are traditionally used to represent
tables, cubes, etc.

Multi-dimensional arrays are created by specifying the
number of elements in each dimension. E.g., the
following statements define and use a two-dimensional
array with two rows and three columns.

Array nazik [2,3]
 child1-child3
 school1-school3
 (
 "Mehera" "Maha" "Marwa"
 "Spring Brook" "Francis Scott" "Burnt's Mill"
)
;
Do i=1 to dim(nazik,2) ;
 Put
 nazik(1,i) " goes to "
 nazik(2,i) " school."
 ;
End ;

Performance Considerations
While arrays make our code more readable and easier

to develop and maintain, it comes with a performance
cost. Consider the cost of looping through the array.
Each time the DO statement executes, SAS has to
increment the iteration counter and compare it with the
stop value. (These tests were run under Windows 2000
with 512 megabytes of memory.)

20 Data _null_ ;
21 Do i=1 to 10**7 ;
22 End ;
23 Run ;

NOTE: DATA statement used
 (Total process time):
 real time 0.21 seconds
 user cpu time 0.20 seconds
 system cpu time 0.00 seconds
 Memory 94k

It takes about 0.2×10-7 seconds per loop for the
increment-and-compare step. It also takes time to test
whether the index is in the bounds of the array. To find
this time-cost, we need a baseline. It takes some time to

build our array of ten million elements, but far less time
than it would take to build a similar variable array.

24 Data _null_ ;
25 Array x [10000000] _temporary_ ;
26 Do i=1 to 10**7 ;
27 End ;
28 Run ;

NOTE: DATA statement used
 (Total process time):
 real time 1.28 seconds
 user cpu time 1.23 seconds
 system cpu time 0.05 seconds
 Memory 78220k

It takes very little more time to embed an assignment
statement in our loop.

29 Data _null_ ;
30 Array x [10000000] _temporary_ ;
31 Do i=1 to 10**7 ;
32 y = i ;
33 End ;
34 Run ;

NOTE: DATA statement used
 (Total process time):
 real time 1.33 seconds
 user cpu time 1.27 seconds
 system cpu time 0.05 seconds
 Memory 78220k

Now we have a baseline. Let's do exactly the same
process but with the assignment to an array rather than a
constant variable.

35 Data _null_ ;
36 Array x [10000000] _temporary_ ;
37 Do i=1 to 10**7 ;
38 x[i] = i ;
39 End ;
40 Run ;

NOTE: DATA statement used
 (Total process time):
 real time 2.00 seconds
 user cpu time 1.94 seconds
 system cpu time 0.05 seconds
 Memory 78220k

It seems to take about 0.67×10-7 seconds to perform the
array lookup.

7
7

1.94 seconds 1.27 seconds 0.67 10 seconds/assignment.
10 assignments

−− = ×

The CPU cost of the variable lookup is over three times
the cost of the DO loop.

Arrays as IF Switches
Arrays can be used to make decisions. Suppose we

want to collapse the levels of a variable that holds the
Federal Information Processing Standard (FIPS) for
states. These are integers from 1 to 56; most of these
numbers represent a state but some are not used. Now
suppose we want to map these to regions. We can use IF
statements, a SELECT clause, or a value format to map
these states to regions. We can also use what Ian
Whitlock calls an array if-switch.

Array stToRgn [56] _temporary_ (
/* state region state region */
 /* 01 */ 2 /* 02 */ 4
 /* 03 */ .E /* 04 */ 4
 /* 05 */ 2 /* 06 */ 4
 /* 07 */ .E /* 08 */ 4
 /* 09 */ 1 /* 10 */ .E
 /* 11 */ 1 /* 12 */ 2
 /* 13 */ 2 /* 14 */ .E
 /* 15 */ 4 /* 16 */ 4
 /* 17 */ 3 /* 18 */ 3
 /* 19 */ 3 /* 20 */ 3
 /* 21 */ 2 /* 22 */ 2
 /* 23 */ 1 /* 24 */ 1
 /* 25 */ 1 /* 26 */ 3
 /* 27 */ 3 /* 28 */ 2
 /* 29 */ 3 /* 30 */ 4
 /* 31 */ 3 /* 32 */ 4
 /* 33 */ 1 /* 34 */ 1
 /* 35 */ 4 /* 36 */ 1
 /* 37 */ 2 /* 38 */ 3
 /* 39 */ 3 /* 40 */ 4
 /* 41 */ 4 /* 42 */ 1
 /* 43 */ .E /* 44 */ 1
 /* 45 */ 2 /* 46 */ 3
 /* 47 */ 2 /* 48 */ 4
 /* 49 */ 4 /* 50 */ 1
 /* 51 */ 2 /* 52 */ .E
 /* 53 */ 4 /* 54 */ 2
 /* 55 */ 3 /* 56 */ 4
) ;
Region = stToRgn[State] ;

You may say "What's the advantage in this method?"
Well, there may be no advantage for such a simple
collapsing of levels. However, sometimes the map

requires nested IF statements or SELECT statements.
Let's look at one of these.

The Array If-Switch with Three Control
Variables:

Suppose we have specifications as follows, taken
directly from an actual specification document:

3. Sort Sampling Frame

Prior to sampling, assign a "permanent" random
number between 0 and 1 to each of the 83,513
schools in the frame using the uniform random
number generator in SAS. Call this random number
RAND. Next, sort the schools in the frame by
STR83, and then within each level of STR83, further
sort the schools by the variables listed in the last
column of Table 7. For example, within stratum 1
(STR83=1), schools should be sorted by URBAN and
then by RAND within URBAN. Within stratum 2
(STR83=2), schools should be sorted by URBAN,
OEREG within URBAN, and finally by RAND within
OEREG, and so on.

• LEVEL takes values of 1 for elementary school
and 2 for secondary school.

• SIZCL takes values of
• 1 for fewer than 300 students
• 2 for 300 to 499 students
• 3 for 500 to 999 students
• 4 for 1000 to 1499 students
• 5 for 1500 students or more

• POVST takes values of
• 0 for missing (recoded by programmer)
• 1 for less than 35%
• 2 for 35% to 49% (percents are

integers)
• 3 for 50% to 74%
• 4 for 75% to 100%

Table 7 is reproduced as an Appendix 1.

A costly solution to this problem would partition the
data into 50 data sets – one for each stratum. Then sort
each of the data sets by its particular requirement.
Finally, put the data sets back together in order of
STRATUM. This approach will not be used.

A more efficient algorithm would create a sorting
variable. This we will do.

We notice that the column specifying the sort variables
uses the random number (RAND) for each row.
Furthermore, that random variable is the last of the
variables used for each level of the sort. Whenever
URBAN and OEREG are used in the sort, they are always
used in that order. Both URBAN and OEREG have values
from 1 to 4.

We now have enough information to create a sorting
variable. Simply multiply URBAN by 10 and then add
OEREG and a number on the interval (0,1) generated by
the RANUNI function. We don't even have to create the
RAND variable.

Of course we still need to create the STRATUM and MOS
variables.

We could create these variables using nested If
statements or Select statements. That solution, in part, is
included in Appendix 2. The full DATA step contains 292
lines of code. A far simpler approach is to use a
TEMPORARY array to make the decisions and then
assign the appropriate value.

We need four dimensions to accomplish this task using
a _TEMPORARY_ array.

• The first dimension specifies the type of school
(LEVEL) and has two levels.

• The second dimension specifies the size of the
school (SIZECL) and has five levels.

• The third dimension specifies the poverty status
(POVST) based on the percentage of the students
who are eligible for free or reduced-price lunches.
Some of these are missing. Missing values will not
work as an array index, so we have recoded the
missing values to zero. The levels of this
dimension range from 0 to 4.

• The fourth dimension has four levels to hold the
needed values from Table 7.

• The first value is the stratum.
• The second value is the desired sampling

rate (MOS).
• The third value specifies whether the URBAN

variable is used in the sort. (1=yes, 0=no)
• The fourth value specifies whether the

OEREG variable is used in the sort.

We copied the last three columns of Table 7 and pasted
them into our ARRAY statement.

Array t [2,5,0:4,4] _temporary_ (
 1 0.005461 URBAN RAND
 2 0.004368 URBAN OEREG RAND
 3 0.005461 URBAN RAND
 4 0.005461 URBAN RAND
 5 0.008401 URBAN RAND
 6 0.008917 URBAN OEREG RAND
 7 0.007134 URBAN OEREG RAND
 8 0.008917 URBAN RAND
etc., through
 49 0.051197 URBAN RAND
 50 0.073138 RAND
) ;

We replaced every occurrence of "URBAN OEREG
RAND" with "1 1". Next we replaced every occurrence
of "URBAN RAND" with "1 0". Finally we replaced
every occurrence of "RAND" with "0 0". The resulting
DATA step follows.

%let seed = 235016 ;
Data Frame ;
 Set demo.Frame ;
 Array t[2,5,0:4,4] _temporary_ (
 /* Stratum MOS Urban OEReg */
 1 0.005461 1 0
 2 0.004368 1 1
 3 0.005461 1 0
 4 0.005461 1 0
 5 0.008401 1 0
 6 0.008917 1 1
 7 0.007134 1 1
 8 0.008917 1 0
 9 0.008917 1 0
 10 0.013719 1 1
 11 0.012210 1 1
 12 0.009768 1 1
 13 0.012210 1 1
 14 0.012210 1 1
 15 0.018785 1 1
 16 0.015763 0 0
 17 0.012611 1 0
 18 0.015763 0 0
 19 0.015763 0 0
 20 0.024251 1 0
 21 0.019939 0 0
 22 0.015951 0 0
 23 0.019939 0 0
 24 0.019939 0 0
 25 0.030676 0 0
 26 0.014021 1 0
etc., through
 49 0.051197 1 0
 50 0.073138 0 0
) ;
 Stratum = t[Level,SizCl,PovSt,1] ;
 MOS = t[Level,SizCl,PovSt,2] ;
 SortVar =
 t[Level,SizCl,PovSt,3]*10*Urban
 + t[Level,SizCl,PovSt,4]*OEReg
 + ranUni(&seed)
 ;
Run ;

Now a simple SORT procedure – sorting on the
SORTVAR variable – gives us our desired result. Our
DATA step used a SET statement, one ARRAY statement,
and three assignment statements. The values in the array
statement were pasted directly from our supplied table
(cut-and-paste) and then modified with three global
search-and-replace operations. The same task using
SELECT blocks involves 292 statements! (See Appendix
2.)

The job using SELECT blocks ran in 0.16 seconds and
used 176k of memory. The version using the array took
0.28 seconds and but used only 105k of memory. So, it's
a judgment call; one way runs faster, the other uses less
memory.

Conclusion
By using a multi-dimensional array we save

development time, run time, and memory. As
programmers, it's natural to automatically think of IF
statements and SELECT blocks for making decisions. We
need to add the array to the list of decision making tools.
Then, when we face a decision-making task, our job will
be to determine which of these is best for that task. Of
course, there are still more options for making decisions
that we have not covered in this paper.

Disclaimer
The contents of this paper are the work of the authors

and do not necessarily represent the opinions,
recommendations, or practices of Westat.

References
SAS® and all other SAS Institute Inc. product and

service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ®
indicates USA registration.

Acknowledgements
We want to thank Ian Whitlock who provided the name,

array if-switch, when we first described the process to
him. We want to thank Mike Rhoads and Duke Owen of
Westat for reviewing this paper and for their suggestions.

We also want to thank Bernadette Mahony of Westat
who provided the project work where this technique was
developed.

Contact Information
Your comments and questions are valued and

encouraged. Contact the authors at:

Nazik Elgaddal Edward Heaton
Westat Westat
1650 Research Boulevard 1650 Research Boulevard
Rockville, MD 20850 Rockville, MD 20850
Phone: (301) 517-4017 Phone: (301) 610-4818
Fax: (301) 294-3992 Fax: (301) 610-5128
NazikElgaddal@Westat.com EdHeaton@Westat.com

Appendix 1
Table 7. Stratum code and desired sampling rate to be assigned for sampling purposes

Level SizCl PovSt Stratum MOS Sort Variables
1. Elementary 1. <300 0. Missing 1 0.005461 URBAN RAND
 1. <35% 2 0.004368 URBAN OEREG RAND
 2. 35 to 49% 3 0.005461 URBAN RAND
 3. 50 to 74% 4 0.005461 URBAN RAND
 4. 75%+ 5 0.008401 URBAN RAND
 2. 300-499 0. Missing 6 0.008917 URBAN OEREG RAND
 1. <35% 7 0.007134 URBAN OEREG RAND
 2. 35 to 49% 8 0.008917 URBAN RAND
 3. 50 to 74% 9 0.008917 URBAN RAND
 4. 75%+ 10 0.013719 URBAN OEREG RAND
 3. 500-999 0. Missing 11 0.012210 URBAN OEREG RAND
 1. <35% 12 0.009768 URBAN OEREG RAND
 2. 35 to 49% 13 0.012210 URBAN OEREG RAND
 3. 50 to 74% 14 0.012210 URBAN OEREG RAND
 4. 75%+ 15 0.018785 URBAN OEREG RAND
 4. 1000-1499 0. Missing 16 0.015763 RAND
 1. <35% 17 0.012611 URBAN RAND
 2. 35 to 49% 18 0.015763 RAND
 3. 50 to 74% 19 0.015763 RAND
 4. 75%+ 20 0.024251 URBAN RAND
 5. 1,500+ 0. Missing 21 0.019939 RAND
 1. <35% 22 0.015951 RAND
 2. 35 to 49% 23 0.019939 RAND
 3. 50 to 74% 24 0.019939 RAND
 4. 75%+ 25 0.030676 RAND
2. Secondary 1. <300 0. Missing 26 0.014021 URBAN RAND
 1. <35% 27 0.013482 URBAN OEREG RAND
 2. 35 to 49% 28 0.014021 URBAN RAND
 3. 50 to 74% 29 0.014021 RAND
 4. 75%+ 30 0.020030 RAND
 2. 300-499 0. Missing 31 0.022896 URBAN RAND
 1. <35% 32 0.022015 URBAN OEREG RAND
 2. 35 to 49% 33 0.022896 RAND
 3. 50 to 74% 34 0.022896 RAND
 4. 75%+ 35 0.032708 RAND
 3. 500-999 0. Missing 36 0.031352 URBAN OEREG RAND
 1. <35% 37 0.030146 URBAN OEREG RAND
 2. 35 to 49% 38 0.031352 URBAN RAND
 3. 50 to 74% 39 0.031352 URBAN RAND
 4. 75%+ 40 0.044788 URBAN RAND
 4. 1000-1499 0. Missing 41 0.040475 URBAN RAND
 1. <35% 42 0.038918 URBAN OEREG RAND
 2. 35 to 49% 43 0.040475 URBAN RAND
 3. 50 to 74% 44 0.040475 RAND
 4. 75%+ 45 0.057821 RAND
 5. 1,500+ 0. Missing 46 0.051197 URBAN RAND
 1. <35% 47 0.049228 URBAN OEREG RAND
 2. 35 to 49% 48 0.051197 URBAN RAND
 3. 50 to 74% 49 0.051197 URBAN RAND
 4. 75%+ 50 0.073138 RAND

Appendix 2
%let seed = 235016 ;
Data Frame ;
 Set demo.Frame ;
 Select (Level) ;
 When (1) select (SizCl) ;
 When (1) select (PovSt) ;
 When (0) do ;
 Stratum = 1 ;
 MOS = 0.005461 ;
 SortVar = Urban*10 + ranUni(&seed) ;
 End ;
 When (1) do ;
 Stratum = 2 ;
 MOS = 0.004368 ;
 SortVar = Urban*10 + OeReg + ranUni(&seed) ;
 End ;
 When (2) do ;
 Stratum = 3 ;
 MOS = 0.005461 ;
 SortVar = Urban*10 + ranUni(&seed) ;
 End ;
 When (3) do ;
 Stratum = 4 ;
 MOS = 0.005461 ;
 SortVar = Urban*10 + ranUni(&seed) ;
 End ;
 When (4) do ;
 Stratum = 5 ;
 MOS = 0.008401 ;
 SortVar = Urban*10 + ranUni(&seed) ;
 End ;
 Otherwise put "ERROR: Unexpected value (" PovSt= ")." ;
 End ;
 When (2) select (PovSt) ;
 When (0) do ;
 Stratum = 6 ;
 MOS = 0.008917 ;
 SortVar = Urban*10 + OeReg + ranUni(&seed) ;
 End ;
 When (1) do ;
 Stratum = 7 ;
 MOS = 0.007134 ;
 SortVar = Urban*10 + OeReg + ranUni(&seed) ;
 End ;
 When (2) do ;
 Stratum = 8 ;
 MOS = 0.008917 ;

 SortVar = Urban*10 + ranUni(&seed) ;
 End ;
 When (3) do ;
 Stratum = 9 ;
 MOS = 0.008917 ;
 SortVar = Urban*10 + ranUni(&seed) ;
 End ;
 When (4) do ;
 Stratum = 10 ;
 MOS = 0.013719 ;
 SortVar = Urban*10 + OeReg + ranUni(&seed) ;
 End ;
 Otherwise put "ERROR: Unexpected value (" PovSt= ")." ;
 End ;
 When (3) select (PovSt) ;
 When (0) do ;
 Stratum = 11 ;
 MOS = 0.012210 ;
 SortVar = Urban*10 + OeReg + ranUni(&seed) ;
 End ;
 When (1) do ;
 Stratum = 12 ;
 MOS = 0.009768 ;
 SortVar = Urban*10 + OeReg + ranUni(&seed) ;
 End ;
 When (2) do ;
 Stratum = 13 ;
 MOS = 0.012210 ;
 SortVar = Urban*10 + OeReg + ranUni(&seed) ;
 End ;
 When (3) do ;
 Stratum = 14 ;
 MOS = 0.012210 ;
 SortVar = Urban*10 + OeReg + ranUni(&seed) ;
 End ;
 When (4) do ;
 Stratum = 15 ;
 MOS = 0.018785 ;
 SortVar = Urban*10 + OeReg + ranUni(&seed) ;
 End ;
 Otherwise put "ERROR: Unexpected value (" PovSt= ")." ;
 End ;
etc. through
 Otherwise put "ERROR: Unexpected value (" SizCl= ")." ;
 End ;
 Otherwise put "ERROR: Unexpected value (" Level= ")." ;
 End ;
Run ;

